Directions: Using the digits 0 to 7, at most once each time, fill in the blanks to create a scatter plot with line of best fit y= 1/2x + 4.

(___ , ___) (___ , ___) (___ , ___) (___ , ___)

Directions: Using the digits 0 to 7, at most once each time, fill in the blanks to create a scatter plot with line of best fit y= 1/2x + 4.

(___ , ___) (___ , ___) (___ , ___) (___ , ___)

Advertisements

Directions: Using the integers 1 to 9, create a data list that produces the following graph. (You may use an integer more than once)

What do you notice about the graph? How does that help you with the problem?

Justify why your list works.

Are there any other data lists that produce the same graph? Provide an example.

Directions: Using the integers 1 to 9, create a data list that produces the following graph. (You may use an integer more than once)

What do you notice about the graph? How does that help you with the problem?

Justify why your list works.

Are there any other data lists that produce the same graph? Provide an example.

Directions: Using the integers 1 to 9, create a data list that produces the following graph. (You may use an integer more than once)

What do you notice about the graph? How does that help you with the problem?

Justify why your list works.

Are there any other data lists that produce the same graph? Provide an example.

What do you notice about the graph? How does that help you with the problem?

Justify why your list works.

Are there any other data lists that produce the same graph? Provide an example.

Directions: Using the numbers 1 to 9, fill in the boxes to create a 2-way frequency table that follows the following guidelines (you may only us a number once):

- The total number of kids interviewed is 242.
- The number of kids who like both superheroes is half the number of kids who like neither.
- Superman is the most popular among the kids interviewed.

What percent of the kids like both superheroes?

What percent of the kids dislike both superheroes?

How much more popular is Superman than Captain America?

Directions: Using the integers 1 to 9, create a data set of 6 or more values that generates the same quartiles as {1,3,3,7,9}, but with a Median of 6 instead. You may use a number more than once.

What patterns did you notice while working on this problem?

What strategies did you theorize you needed?

Were any of them solutions?

What strategy did you find?

Can this strategy be used to change Q1 or Q3?

What if your data set was to only have 5 numbers?